データサイエンティストにはなれなかった

データ活用について考えていくブログ

ビッグデータについて

ビッグデータについて何を今更言うんだって感じですが

自分の考えをまとめるために書いておきます。

 

ビッグデータとは3Vと言われるVolume(大量)Variety(多種)Velocity(高頻度)の3つのうち1つ以上の概念を持つデータです。

上記の3つにVeracity(正確さ)を足して4Vと言う場合もあるそうですが、

個人的に意味が分からないです。レイヤーが違いますよね?って感じです。

 

要するにビッグデータとは「ちょっと前までは扱うのが絶望的に難しかったデータ」というものなのです。

それが、テクノロジーの進歩によって比較的容易に集計したり分析したりすることが可能になりました。そして、大手ITベンダー様の営業の甲斐もあり、国内でも意識の高い企業がビッグデータ分析に取り組み始めたというのが現状なのではないでしょうか。

 

個人的に、「ビッグデータ」が盛り上がることによって、データドリブンな考え方が啓蒙されるのであればそれは嬉しいことだと思っています。しかし、その一方で危惧していることもあります。

まだデータドリブンな考えが根付いていない企業が「ビッグデータを溜める箱」や「ビッグデータを分析できるソフト」を導入しても、その費用に対する効果を上げられないのではないかということです。

「高いお金を出したけれど、ビッグデータって思ってたより使えないし、データ分析とか意味ないね」なんてことになっても誰も幸せになりません。だから、ビッグデータを扱う環境を構築しようとしている企業はまず「データを何に使うのか?どう使うのか?」を社内で議論していただくのが良いのではないかと思っています。

ここで言うデータとは「ビッグデータ」に限りません。ビッグデータを分析しないと分からないこともありますが、スモールデータでもデータを利用する目的を達成できることは少なくないので。

 

以上などなどにより、市場で流行って欲しい言葉は「ビッグデータ」よりも「データドリブン」とか「データサイエンス」だよなぁと感じています。